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Abstract. This paper outlines a technique for determining whether or not a given first-order
ordinary differential equation (ODE) is invariant under a one-parameter Lie group of conformal
symmetries. The method does not require the form of the Lie group to be specifieda priori.
Instead, theODE is used to determine the infinitesimal generator of the group. Once it has been
ascertained that theODE has conformal symmetries, the method immediately yields theODE’s

general solution.

1. Introduction

It seems paradoxical that all first-order ordinary differential equations (ODEs) of the form

y ′ = ω(x, y) (1.1)

can be solved (i.e., reduced to quadrature) in principle, yet relatively few are solvable in
practice. This fact is most easily explained using Lie’s theory of symmetries (see any of
[1]–[3] for a modern exposition). If

X = ξ(x, y)∂x + η(x, y)∂y (1.2)

is the infinitesimal generator of a one-parameter Lie group of point symmetries of (1.1),
and if

Q(x, y) ≡ η(x, y) − ω(x, y)ξ(x, y) (1.3)

is not identically zero, the general solution of (1.1) is∫
dy − ω(x, y)dx

Q(x, y)
= c (1.4)

wherec is an arbitrary constant. The operatorX generates point symmetries of (1.1) iff

ηx + ω(ηy − ξx) − ω2ξy = ξωx + ηωy (1.5)

which can be re-written as

Qx + ωQy = ωyQ. (1.6)
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Equation (1.6) has an infinity of non-zero solutions, any one of which would enable (1.1)
to be integrated. (In fact, the set of solutions of (1.6) is a finitely-generated module over
the algebra of first integrals of (1.1) — see [6].) The characteristic equation for (1.6) is

dx

1
= dy

ω
= dQ

ωyQ
. (1.7)

Therefore it is usually necessary to solve (1.1) before (1.6) and (1.7) can be solved.
However, the reason for using symmetries in the first place is to find the solution of (1.1)!

In the face of the above difficulty, several approaches are possible. The first is to
use group classification, i.e., to find families ofODEs that are invariant under the group
generated by a particularX. Most elementary methods are based on this idea. A more
recent idea, suggested by Olver [1], is to regard (1.1) as an inappropriate reduction of a
second-orderODE that has a solvable non-Abelian Lie algebra. The second-orderODE can
be solved completely, providing the general solution of (1.1). Here (1.1) is said to have a
Type I hidden symmetry [4]. Families ofODEs having a particular hidden symmetry can be
classified [4].

Neither of the above methods is helpful whenω is given and (1.1) does not belong to
a family of ODEs having known point or hidden symmetries. One option is to try to find a
solution of (1.5) or (1.6) using a variety of ansätze for(η, ξ) or Q. This method is fruitful
occasionally, but it depends heavily on the skill and persistence of its user.

In the current paper, an elementary method is developed that enables (1.1) to be tested for
the presence of a one-parameter Lie group of conformal symmetries. Conformal symmetries
are important in many branches of physics; the best-known such symmetries are translations,
rotations, homogeneous scalings, and inversions. It is easy to check for the presence of any
single type of conformal symmetry by choosing(η, ξ) appropriately. However, the set of
conformal symmetries available toODEs of the form (1.1) is infinite. The method outlined
in this paper is useful because it seeks all conformal symmetries simultaneously, rather than
restricting attention to particular symmetries. If conformal symmetries are found, (1.1) can
be solved immediately.

2. How to find conformal symmetries

The one-parameter Lie group of symmetries generated by anX satisfying (1.5) is conformal
(see [1]) iff

ξx = ηy ξy = −ηx. (2.1)

Then the symmetry condition (1.5) amounts to

ηx(1 + ω2) = ξωx + ηωy. (2.2)

For simplicity, we restrict attention to regions of the(x, y) plane in which all required
derivatives ofω exist (i.e.,ω is five times continuously differentiable). The method can be
used formally even whenω is less smooth than this, although some care is needed. We
introduce the complex quantities

w = η − iξ w̄ = η + iξ z = x + iy z̄ = x − iy (2.3)
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and the real function

µ(z, z̄) = tan−1

{
ω

(
z + z̄

2
,
z − z̄

2i

)}
where µ ∈

(
−π

2
,
π

2

)
. (2.4)

The Cauchy–Riemann conditions (2.1) guarantee thatw is an analytic function ofz,
and that its complex conjugate,̄w, is an analytic function of̄z. The symmetry condition
(2.2) is equivalent to

Im

{
i

2

dw

dz
+ wµz

}
= 0. (2.5)

It is convenient to introduce new complex analytic functions

ζ(z) =
∫

dz

w(z)
ζ̄ (z̄) =

∫
dz̄

w̄(z̄)
. (2.6)

Note that

r ≡ ζ(z) + ζ̄ (z̄)

2
=

∫
ηdx − ξdy

ξ2 + η2
(2.7)

and

s ≡ ζ(z) − ζ̄ (z̄)

2i
=

∫
ξdx + ηdy

ξ2 + η2
(2.8)

are canonical coordinates, because

Xr = 0 Xs = 1. (2.9)

The symmetry condition is, in terms ofζ(z) and ζ̄ (z̄),

Im

{
∂

∂ζ

(
µ + i

2
ln

dz

dζ

)}
= 0. (2.10)

After some elementary algebra, the following result is obtained.
The ODE (1.1) admits a one-parameter Lie group of conformal symmetries iff

µ(z, z̄) = F(r) + i
2 ln(ζ ′(z)) − i

2 ln(ζ̄ ′(z̄)) (2.11)

for some real functionF and some complex analytic functionζ(z).
This result could be used as a basis for group classification: choose any analytic function

ζ(z) to obtain X; the most general first-orderODE (1.1) admitting the symmetry group
generated byX is

y ′ = tanµ(x + iy, x − iy) (2.12)

whereµ(z, z̄) is given by (2.11) withF(r) an arbitrary real function.
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However, as stated in the introduction, our aim is to derive conformal symmetries (where
they exist) from a givenω. This can be achieved by repeated differentiation. If theODE

(1.1) admits conformal symmetries then, from (2.11),

µzz̄ = 1

4
ζ ′(z)ζ̄ ′(z̄)F ′′(r) (2.13)

and (provided thatµzz̄ 6= 0)

(ln |µzz̄|)zz̄
µzz̄

= (ln |F ′′(r)|)′′
F ′′(r)

(2.14)

(ln |µzz̄| + 2iµ)z(ln |µzz̄| − 2iµ)z̄

µzz̄

= {(ln |F ′′(r)|)′}2 + 4{F ′(r)}2

F ′′(r)
. (2.15)

Given ω, it is straightforward to calculateµzz̄ and (if µzz̄ 6= 0)

ν ≡ (ln |µzz̄|)zz̄
µzz̄

(2.16)

λ ≡ (ln |µzz̄| + 2iµ)z(ln |µzz̄| − 2iµ)z̄

µzz̄

. (2.17)

There are three possibilities.

Case I:ν not constant. If (1.1) admits conformal symmetries, thenν is a function ofr
and so

νz

νz̄

= ζ ′(z)
ζ̄ ′(z̄)

. (2.18)

If the left-hand side of (2.18) is separable,ζ ′(z) can be determined up to an arbitrary real
constant factor; otherwise (1.1) has no conformal symmetries. The effect of the arbitrary
factor is to multiplyX by a constant, so the factor can take any convenient (non-zero) value
without loss of generality. Then the canonical coordinatesr ands can each be determined
(up to an irrelevant constant) by quadrature. The necessary condition that (2.18) should
be solvable does not guarantee that (1.1) has conformal symmetries; one must check that
ζ(z) also satisfies the sufficient condition (2.11). It may be easier to check the equivalent
condition (2.10), which can be re-written as

Im

{
1

ζ ′(z)

(
µz − iζ ′′(z)

2ζ ′(z)

)}
= 0. (2.19)

Having ascertained thatζ(z) satisfies the sufficient condition, it is then easy to determine
F(r) from (2.11).
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Case II: ν constant,µzz̄ 6= 0. If ν = c (where c is a real constant) and (1.1) admits
conformal symmetries, then

(ln |F ′′(r)|)′ = cF ′(r) + d (2.20)

whered is a real constant. Then, from (2.15) and (2.17),

λ = (c2 + 4){F ′(r)}2 + 2cdF ′(r) + d2

F ′′(r)
. (2.21)

It is straightforward to check thatλ is not constant for any solutionF(r) of (2.20). Therefore
if (1.1) admits conformal symmetries

λz

λz̄

= ζ ′(z)
ζ̄ ′(z̄)

. (2.22)

As in Case I,ζ ′(z) can be determined up to an irrelevant constant factor. Once again, the
sufficient condition (2.19) must also be satisfied.

Case III: µzz̄ = 0. Hereµ is of the form

µ = f (z) + f̄ (z̄) (2.23)

for some analytic functionf (z). The ODE (1.1) always admits a conformal symmetry in
this case, with

ζ(z) =
∫

exp{−2if (z)}dz. (2.24)

Then the sufficient condition (2.11) holds, andF(r) = 0.

3. The general solution of theODE

Onceζ(z) and F(r) have been found by the above method, it is easy to write down the
general solution of (1.1), which is∫

dy − ωdx

η − ωξ
= c (3.1)

wherec is an arbitrary real constant. In terms of(ζ, ζ̄ ),∫
dy − ωdx

η − ωξ
= 1

i

∫
e−iF(r)dζ − eiF(r)dζ̄

e−iF(r) + eiF(r)
. (3.2)

Therefore in canonical coordinates, the general solution of (1.1) is

s −
∫

tan(F (r))dr = c. (3.3)

If µzz̄ = 0, the general solution of (1.1) iss = c; from (2.24), we obtain

Im

{∫
exp{−2if (z)}dz

}
= c. (3.4)

The solution (3.4) is listed by Kamke [5], whereas the more general solution (3.3) of Cases
I and II is new.
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4. Examples

Here the method is illustrated in Cases I and II, where a little work is needed to determine
whether or not conformal symmetries exist. Case III is trivial, and is therefore omitted.

Consider theODE

y ′ = x − y(x2 − y2)2

y + x(x2 − y2)2
= 4(z + z̄) + i(z − z̄)(z2 + z̄2)2

−4i(z − z̄) + (z + z̄)(z2 + z̄2)2
. (4.1)

A short calculation gives

µ = tan−1

(
4

(z2 + z̄2)2

)
+ i

2
ln

(z

z̄

)
. (4.2)

By taking repeated derivatives as described in section 2 (using computer algebra), it is found
that (4.1) is a Case IODE, and that (2.18) amounts to

ζ ′

ζ̄ ′ = z

z̄
. (4.3)

Therefore

ζ = z2 (4.4)

(to within an arbitrary real constant factor). Comparing (4.2) with (2.11), it is immediately
obvious that theODE (4.1) admits conformal symmetries, and that

F(r) = tan−1(r−2). (4.5)

Hence the general solution of (4.1) is

s + 1

r
= c (4.6)

where

s = (z2 − z̄2)

2i
= 2xy r = (z2 + z̄2)

2
= x2 − y2. (4.7)

As a second example, consider theODE

y ′ =
2xy + (x2 − y2) tan

{
2x2

(x2+y2)2

}
x2 − y2 − 2xy tan

{
2x2

(x2+y2)2

} . (4.8)

Here

µ = 2x2

(x2 + y2)2
+ tan−1

{
2xy

x2 − y2

}
= (z + z̄)2

2z2z̄2
− i ln

(z

z̄

)
(4.9)

and so

µzz̄ = 1

z2z̄2
and ν = 0. (4.10)
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Therefore theODE (4.8) is an example of Case II. From (2.17),

λ = 4(z + z̄)2

z2z̄2
(4.11)

and therefore

λz

λz̄

= z̄2

z2
. (4.12)

Equation (4.12) is separable, and we obtain

ζ = 1

z
(4.13)

(to within an arbitrary real constant factor). Note that

1

ζ ′(z)

(
µz − iζ ′′(z)

2ζ ′(z)

)
= z + z̄

zz̄
(4.14)

and so the sufficient condition (2.19) is satisfied. Comparing (4.9) with (2.11), we find that

F(r) = 2r2. (4.15)

Therefore the general solution of (4.8) is

s −
∫

tan(2r2)dr = c (4.16)

where

s(x, y) = −y

x2 + y2
r(x, y) = x

x2 + y2
. (4.17)

Finally, consider theODE

y ′ = cosx − (y − ln(cosx)) sinx

sinx + (y − ln(cosx)) cosx
x ∈ (0,

π

2
). (4.18)

A short calculation gives

µ = tan−1

{
ln

(
eiz + e−iz̄

2

)}
+ π

2
− z + z̄

2
. (4.19)

Following the method of section 2, it is found that (4.18) is a Case IODE, which admits
conformal symmetries with

ζ(z) = eiz F (r) = tan−1 {ln r} . (4.20)

In fact, it is fairly easy to spot (4.20) by comparing (4.19) with (2.11), but the method
works just as well whether or not solutions can be found by inspection. Carrying out the
quadrature in (3.3), and writing(r, s) in terms of(x, y), we obtain the general solution

e−y
[
sinx + [y + 1 − ln(cosx)]

] = c. (4.21)

The above examples have been tested using theodecollection of solvers which are available
within the computer algebra system MACSYMA. The first example, (4.1), has a polynomial
integrating factor whichode is able to find. However,ode was unable to solve (4.8) and
(4.18), suggesting that the current method is a useful addition to existing techniques.
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5. Conclusions

The method developed above is straightforward to use, and extends the range of techniques
for integrating first-orderODEs. There are only a few cases to consider, and these are easy to
check with the aid of computer algebra. Indeed, the whole technique could be implemented
as a computer algebra package without much difficulty.

In this paper we have restricted attention to conformal symmetries, in view of their
importance in physics. It remains to be seen how far the constructive approach can be used
to determine other symmetries of a given first-orderODEs.

References

[1] Olver P J 1986Applications of Lie Groups to Differential Equations(New York: Springer)
[2] Bluman G W and Kumei S 1989Symmetries and Differential Equations(New York: Springer)
[3] Stephani H 1989Differential equations: Their solution using symmetries(Cambridge: Cambridge University

Press)
[4] Abraham-Schrauner B and Guo A 1992J. Phys. A: Math. Gen25 5597
[5] Kamke E 1967Differentialgleichungen: L¨osungsmethoden und L¨osungen I: Gew¨ohnliche Differentialgle-

ichungen (8th ed)(Leipzig: Akademische Verlagsgesellschaft)
[6] Gaeta G 1994Nonlinear Symmetries and Nonlinear Equations(Dordrecht: Kluwer)


